

Advisor : Ming Ouhyoung, Ph.D.
jacktsai@cmlab.csie.ntu.edu.tw

Introduction

- We build a mesh deformation system
- A user-friendly interface for easy manipulation
- Detail preservation
- Satisfying lots constraints
- Intuitive result

Introduction

Length constraint

Joint angle constraint

Rigidity constraint

Outline

Introduction
Related Work
System
Results
Conclusions and Future Work

Outline

Introduction

Related Work
System
Results
Conclusions and Future Work

Related Work

- Mesh Deformation
- Motivation: Meshediting
- Creating and modifying the shape of model
- Modify global shape
- Preserve local features and global continuity
- Simple control mechanism
- Intuitive results

Related Work

- Mesh deformation
- Detail preservation based on local coordinates
- Laplacian surface editing [Sorkine et al. 2005]
- Laplacian coordinates
- Cast mesh deformation as an energy minimization problem
- The optimizations involved are often nonlinear and require Gauss-Newton iterations
- Slow-converging
- The limitation can be overcome through
- Linear solver (faster) [Lipman et al. 2004, Zhov et al. 2005]

Related Work

- Mean value coordinates for closed triangular meshes [Ju et al. 2005]
- A coarser mesh embedding the mesh model
- Interpolate values assigned to the vertices of a closed mesh
- The disadvantage
- Not convenient for user to control
- Other manipulation
- Control handle
- Rigging

Related Work

- Mesh Puppetry [Zhou et al. 2007]
- Direct manipulation \& detail preservation
- A set of high-level IK constraints (length, rigidity, joint limit, balance)
- A cascading optimization procedure

- Our system
- Easy manipulation \& Rigging
- Satisfying high-level constraints
- Linear solver for deformation energy function

Outline

Introduction
Related Work
System
Results
Conclusions and Future Work

System

- Input: Mesh + skeleton

System

- How to build the skeleton?

System

- Steps of manipulation

Load Model
Load skeleton
Move the selected joint

Deformation

Result

System

- Tetrabone [zhou etal. 2007]

System

- How to get the deformed mesh ?

System

- The output of skinned mesh

$$
\mathbf{x}=\mathbb{V} \overline{\mathbb{V}}^{-1} \mathbf{W} \overline{\mathbf{x}}
$$

We want to get them!!

- We look up for a deformed mesh with vertex position \mathbf{X} (as a function of \mathbf{V} and \mathbf{W})
- Minimize the global deformation energy

$$
\mathcal{M}=\underset{\mathbf{X}=\mathbb{V} \overline{\mathbb{V}}^{-1} \mathbf{w} \overline{\mathbf{X}}}{\arg \min } \mathcal{E}(\mathbf{X})
$$

System

Load model \& skeleton

flowchart

System

- Initialize W

System

- V-step
- General constraints
- Laplacian constraint
- Position constraint
- High level constraints
- Length
- Rigidity
- Joint angle limit

System v-step

- Laplacian constraint
- Preserve the detail of the surface

$$
\left\|L X-\frac{L^{\prime}}{\left\|L X^{\prime}\right\|}\right\| L \bar{X}\left\|\|^{2}\right.
$$

- Position constraint
- Allow direct manipulation of the mesh for intuitive design

$$
\left\|P X-X^{\prime}\right\|^{2}
$$

System v-step

- Length constraint [zhovetal. 2007]
- Control the length of the "bones"

$$
\sum_{(i, j) \in \text { bones }}\left(\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|-L_{i j}\right)^{2}
$$

System v-step

- Rigidity constraint [zhou etal. 2007]
- Force near-rigid deformation of skin around bones

- v_{i}, v_{j} : the position of tetravertices i, j
- $l_{i j}$: the distance between tetravertices i, j

System v-step

- Joint angle limit constraint [zhou etal 2007]
- Restrict the range of joint angles for added realism

$$
\sum\left\|\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)-\theta_{i j}\right\|^{2}
$$

- $v_{i,}, v_{j}$: the position of tetravertices i, j
- $\Theta_{i \mathrm{ij}}$: the target vector between tetravertices i, j

System v-step

- Combine all constraints

区 $=8$
$\mathrm{X}=\mathrm{P}^{\prime}$

Joint limit

- V-step : Optimization of V
- Method 1: Only solve V then get X
- Method 2 : Solve V and X at the same time

System v-step

Method 1:
Only solve V

System v-step

Method 2:

Solve V \& X

\rightarrow get (X \& V)

\rightarrow get X!!

System v-step

Method 1

Method 2

System V-step

Compare

	Method 1	Method 2
Dimension	Small	Large
Result	Worse	Better
Cost time	o.6 sec	1.2 sec (more)
W-step	necessary	optional
Large model	efficient	slower

System
 W-step

- W-step
- Constraints on Vertex Weights only
- Smooth constraint

$$
\begin{aligned}
\varepsilon- & \left\|\mathrm{LX}-\mathrm{LX}^{\prime}\right\|^{2}+\left\|\mathrm{PX}-\mathrm{X}^{\prime}\right\|^{2} \quad \text { (Laplacain \& Position constraint) } \\
& +\sum_{(i, j) \in \mathrm{pairs}\left(b_{i}, b_{j}\right)}\left(\mathrm{W}_{b i}-\frac{1}{|N(i)|} \sum_{j \in N_{i}} \mathrm{~W}_{\mathrm{bj}}\right)^{2} \quad(\text { Smooth term) } \\
& +\sum_{i \in[1 \ldots \mathrm{n}]}\left(\sum_{b \in B} \mathrm{~W}_{\mathrm{bj}}-1\right)^{2} \quad \text { (Normalization term) }
\end{aligned}
$$

System w-step

W-step times

0

Outline

Introduction

Related Work
System
Results
Conclusions and Future Work

Results

Length constraint

Without Length constraint

With Length constraint

Results

Length constraint

Without Length constraint

With Length constraint

Results

Rigidity constraint

Without Rigidity constraint

With Rigidity constraint

Results

Joint angle constraint

Without Joint angle constraint

With Joint angle constraint

Results

Some Interesting Results

Results

Some Interesting Results

RaidBidiestadtagl u|p

Armadillo

Outline

Introduction
 Related Work
 System
 Results
 Conclusions and Future Work

Conclusions and Future Work

- Conclusions
- Convenience of manipulation on rigging and deformation
- High-level constraints, and more natural and realistic deformed mesh
- Potential of the system
- An interactive deformation platform
- Various applications
- Deformation transfer
" Motion retargeting

Conclusions and Future Work

- Future Work
- Balance constraint
- Mesh Puppetry [Zhou et al. 2007]
- Auto-skeleton extraction
- Domain Connected Graph: the Skeleton of a Closed 3D Shape for Animation [Wu et al. 2006]
- Implement on multi-core processor

Demo film

Thank you

jacktsai@cmlab.csie.ntu.edu.tw

Laplacain coordinates

- Laplacain coordinates

$$
\delta_{i}=\mathrm{V}_{\mathrm{i}}-\frac{1}{d_{i}} \sum_{j \in N_{i}} \mathrm{~V}_{\mathrm{j}}
$$

- $\mathrm{di}_{\mathrm{i}}=$ degree of Vi_{i}
- $\mathrm{di}=\cot \alpha+\cot \beta$
(uniform weights)
(cotangent weights)

Laplacain coordinates

- If we consider the rotation ...

	Rotation matrix	$=$	Vi.x Vi.y Vi.z 1 V_{1}^{\prime}. $\mathrm{x} \mathrm{V}^{\prime}$. $\mathrm{y} \mathrm{V}_{1}^{\prime}: \mathrm{z} 1$ $V_{2}^{\prime} . x V^{\prime} . y V^{\prime} . z 1$ $V_{n}^{\prime} . x V_{n}^{\prime}: y V_{n}^{\prime}, z 1$
V	R	=	V'
$\mathrm{R}=(\mathrm{V}$	${ }^{-1} V^{\top} V^{\prime}$		

Laplacain coordinates

If we consider the rotation ...

$$
\begin{aligned}
L V^{\prime}= & L V R
\end{aligned} \quad \begin{array}{ll}
& V=V^{\prime} \\
& =L V\left(V^{\top} V\right)^{-1} V^{\top} V^{\prime} \\
\left.L\left(V^{\prime}-V\left(V^{\top} V\right)\right)^{-1} V^{\top} V^{\prime}\right)=0 & R V^{-1} V^{\top} V^{\prime} \\
L\left(1-V\left(V^{\top} V\right)^{-1} V^{\top}\right) V^{\prime}=0 &
\end{array}
$$

Length constraint

- Length constraint
" Control the length of the "bones"

$$
\sum_{i}\left(\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|-L_{i j}\right)^{2}
$$

$(i, j) \in$ bones

$$
\left\|\left(\mathrm{v}_{i}-\mathrm{v}_{j}\right)-\frac{\mathrm{v}_{i}^{\prime}-\mathrm{v}_{j}^{\prime}}{\left\|\mathrm{v}_{i}^{\prime}-\mathrm{v}_{j}^{\prime}\right\|} \mathrm{L}_{i j}\right\|^{2}
$$

After Rigidity constraint

- Rigidity constraint
- After deformation, we rebuild new tetrabones to be reused in next times

System

Method 1:
 Only solve V

System

Method 1

Joint angle limit constraint

V-step

- Joint angle limit constraint
- Restrict the range of joint angles for added realism

- $v_{i,} v_{j}$: the position of tetravertices i, j
- Θ_{ij} : the target vector between tetravertices i, j

