Tsung-Yu Tsai

Constraints-based 3D Model Deformation

Advisor : Ming Ouhyoung, Ph.D.

jacktsai@cmlab.csie.ntu.edu.tw

Introduction

- We build a mesh deformation system
 - A user-friendly interface for easy manipulation
 - Detail preservation
 - Satisfying lots constraints
 - Intuitive result

Introduction

Length constraint

Rigidity constraint

Joint angle constraint

Outline

- Introduction
- Related Work
- System
- Results
- Conclusions and Future Work

Outline

- Introduction
- Related Work
- System
- Results
- Conclusions and Future Work

- Mesh Deformation
 - Motivation : Mesh editing
 - Creating and modifying the shape of model
 - Modify global shape
 - Preserve local features and global continuity
 - Simple control mechanism
 - Intuitive results

- Mesh deformation
 - Detail preservation based on local coordinates
 - Laplacian surface editing [Sorkine et al. 2005]
 - Laplacian coordinates
 - Cast mesh deformation as an energy minimization problem
 - The optimizations involved are often nonlinear and require Gauss-Newton iterations
 - Slow-converging
 - The limitation can be overcome through
 - Linear solver (faster) [Lipman et al. 2004, Zhou et al. 2005]

- Mean value coordinates for closed triangular meshes [Ju et al. 2005]
 - A coarser mesh embedding the mesh model
 - Interpolate values assigned to the vertices of a closed mesh
 - The disadvantage
 - Not convenient for user to control
- Other manipulation
 - Control handle
 - Rigging

Mesh Puppetry [Zhou et al. 2007]

- Direct manipulation & detail preservation
- A set of high-level IK constraints (length, rigidity, joint limit, balance)
- A cascading optimization procedure

- Our system
 - Easy manipulation & Rigging
 - Satisfying high-level constraints
 - Linear solver for deformation energy function

Outline

- Introduction
- Related Work

System

- Results
- Conclusions and Future Work

Input: Mesh + skeleton

How to build the skeleton ?

SHADING VIEW:	Skeleton + Mesh	Controller + Mesh 🔅 All	© Me	Load Mesh Sav	/e Mesh Subdivision
					imation Simplification
				SKELETON SET:	
				Set The Joints	Load the Skeleton
				Connect The Joints	SAVE the Skeleton
				RESET REDO [MOVE FINISH
		//46		USER SELECT:	Compute W initial
		LAP-		User Select	□ Animation
					Clear
				CONSTRAINTS:	ADVANCED:
				Laplacian + Position	Conflict detection
				☐ Balance]
				☐ Length]
				🗌 Joint limit]
				☐ Rigidity]
				MESSAGE:	

Steps of manipulation

Load skeleton

Move the selected joint

Deformation

Result

System

Tb

Tetrabone [Zhou et al. 2007]

Vb

 $\overline{\mathbf{V}}_1 \ \overline{\mathbf{V}}_2 \ \overline{\mathbf{V}}_3 \ \overline{\mathbf{V}}_2$

Vb

V1 V2 V3 V4

How to get the deformed mesh ?

$$\mathbf{x}_i = \mathbf{X} = \mathbb{T}\mathbf{W}\mathbf{\overline{X}}_b^{\prime} \, \bar{\mathbf{x}}_i$$

b \in bones

$$\mathbf{T}_b = \mathbf{V}_b \overline{\mathbf{V}}_b^{-1}$$

$$\mathbf{x} \mathbf{X} = \mathbb{V} \overline{\mathbb{V}}^{-1} \mathbf{W} \overline{\mathbf{X}}^{1} \mathbf{x}_{i}$$

Deformed mesh model

/

The output of skinned mesh

$$\mathbf{X} = \mathbb{V} \overline{\mathbb{V}}^{-1} \mathbf{W} \overline{\mathbf{X}}$$

We want to get them!!

- We look up for a deformed mesh with vertex position
 X (as a function of V and W)
 - Minimize the global deformation energy

$$\mathcal{M} = \operatorname*{arg\,min}_{\mathbf{X} = \mathbb{V}\,\overline{\mathbb{V}}^{-1}\,\mathbf{W}\overline{\mathbf{X}}} \mathcal{E}\left(\mathbf{X}\right)$$

Initialize W

System

V-step

- General constraints
 - Laplacian constraint
 - Position constraint
- High level constraints
 - Length
 - Rigidity
 - Joint angle limit

Laplacian constraint

Preserve the detail of the surface

$$\left\| LX - \frac{LX'}{\|LX'\|} \|L\overline{X}\| \right\|^2$$

- Position constraint
 - Allow direct manipulation of the mesh for intuitive design

$$\| PX - X' \|^2$$

• Length constraint [Zhou et al. 2007]

Control the length of the "bones"

$$\sum_{(i,j)\in\text{bones}} \left(\|\mathbf{v}_i - \mathbf{v}_j\| - L_{ij} \right)^2 \qquad \forall_i \bullet \bullet \forall_j$$

Original length of bone

- Rigidity constraint [Zhou et al. 2007]
 - Force near-rigid deformation of skin around bones

- v_i, v_j: the position of tetravertices i, j
 I_{ij}: the distance between tetravertices i, j

- Joint angle limit constraint [Zhou et al. 2007]
 - Restrict the range of joint angles for added realism

$$\sum_{(i,j)\in \text{pairs}(b_1,b_2)} \left\| (\mathbf{v}_i - \mathbf{v}_j) - \boldsymbol{\theta}_{ij} \right\|^2$$

- v_i, v_j: the position of tetravertices i, j
 Θ_{ij}: the target vector between tetravertices i, j

System V-step

- Combine all constraints $L \qquad X = \delta'$ $P \qquad X = P'$ V = 0 $length \qquad V = 0$ $Joint limit \qquad V = 0$
- V-step : Optimization of V
 - Method 1 : Only solve V then get X
 - Method 2 : Solve V and X at the same time

Method 2: Solve V & X

 \rightarrow get X !!

δ

D'

Method 1

Method 2

System V-step

Compare

	Method 1	Method 2	
Dimension	Small	Large	
Result	Worse	Better	
Cost time	o.6 sec	1.2 sec (more)	
W-step	necessary	optional	
Large model	efficient	slower	

W-step

÷.

- Constraints on Vertex Weights only
 - Smooth constraint

$$\varepsilon = \| LX - LX' \|^2 + \| PX - X' \|^2$$
 (Laplacain & Position constraint

+
$$\sum_{(i,j)\in \text{pairs}(b_i, b_j)} (W_{bi} - \frac{1}{|N(i)|} \sum_{j\in N_i} W_{bj})^2 \quad \text{(Smooth term)}$$

+
$$\sum_{i\in[1...n]} (\sum_{b\in B} W_{bj} - 1)^2 \quad \text{(Normalization term)}$$

System W-step

3

W-step times

Outline

- Introduction
- Related Work
- System
- Results
- Conclusions and Future Work

Length constraint

Without Length constraint

With Length constraint

Length constraint

Without Length constraint

With Length constraint

Rigidity constraint

Without Rigidity constraint

With Rigidity constraint

Joint angle constraint

Without Joint angle constraint

With Joint angle constraint

Some Interesting Results

Results

Some Interesting Results

Rais Biaies stategi up

Armadillo

Outline

- Introduction
- Related Work
- System
- Results

Conclusions and Future Work

Conclusions and Future Work

- Conclusions
 - Convenience of manipulation on rigging and deformation
 - High-level constraints, and more natural and realistic deformed mesh
 - Potential of the system
 - An interactive deformation platform
 - Various applications
 - Deformation transfer
 - Motion retargeting

Conclusions and Future Work

Future Work

- Balance constraint
 - Mesh Puppetry [Zhou et al. 2007]

Auto-skeleton extraction

- Domain Connected Graph: the Skeleton of a Closed 3D Shape for Animation [Wu et al. 2006]
- Implement on multi-core processor

Demo film

Thank you

jacktsai@cmlab.csie.ntu.edu.tw

Laplacain coordinates

Laplacain coordinates

 $\delta_i = \mathbf{V_i} - \frac{1}{d_i} \sum_{i=1}^{n} \mathbf{V_j}$

- di = degree of Vi
- di = $\cot \alpha$ + $\cot \beta$

(uniform weights) (cotangent weights)

Laplacain coordinates

If we consider the rotation ...

 $\mathbf{R} = (\mathbf{V}^{\mathsf{T}}\mathbf{V})^{-1} \mathbf{V}^{\mathsf{T}}\mathbf{V}'$

Laplacain coordinates

- If we consider the rotation ...
 - V R = V'LV' = LVR
 - $\mathbf{R} = (\mathbf{V}^{\mathsf{T}}\mathbf{V})^{-1} \mathbf{V}^{\mathsf{T}} \mathbf{V}'$ $= L V (V^{T}V)^{-1} V^{T}V'$
 - $L(V' V(V^{T}V)^{-1}V^{T}V') = 0$
 - $L (1 V (V^T V)^{-1} V^T) V' = 0$

Length constraint

Length constraint

Control the length of the "bones"

$$\sum_{(i,j)\in\text{bones}} \left(\|\mathbf{v}_i - \mathbf{v}_j\| - L_{ij} \right)^2$$

$$\left\| \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right) - \frac{\mathbf{v}_{i}' - \mathbf{v}_{j}'}{\left\| \mathbf{v}_{i}' - \mathbf{v}_{j}' \right\|} \mathbf{L}_{ij} \right\|^{2}$$

After Rigidity constraint

Rigidity constraint

 After deformation, we rebuild new tetrabones to be reused in next times

Method 1

2*nB +nJ

Joint angle limit constraint

Joint angle limit constraint

Restrict the range of joint angles for added realism

$$\sum_{\substack{i,j\}\in \text{pairs}(b_1,b_2)\\ \sum_{\substack{(i,j)\in \text{pairs}(b_i,b_j)}} \left\| (\mathbf{v}_i - \mathbf{v}_j) - \theta_{ij} \right\|^2} \mathbf{v}_i$$

$$l_{ikj} = \sqrt{l_{ik}^{2} + l_{jk}^{2} - 2 l_{ik} l_{jk} \cos \theta_{ikj}}$$

v_i, v_j: the position of tetravertices i, j
 Θ_{ij}: the target vector between tetravertices i, j

